Hybrid Decoding: Decoding with Partial Hypotheses Combination over Multiple SMT Systems
نویسندگان
چکیده
In this paper, we present hybrid decoding — a novel statistical machine translation (SMT) decoding paradigm using multiple SMT systems. In our work, in addition to component SMT systems, system combination method is also employed in generating partial translation hypotheses throughout the decoding process, in which smaller hypotheses generated by each component decoder and hypotheses combination are used in the following decoding steps to generate larger hypotheses. Experimental results on NIST evaluation data sets for Chinese-to-English machine translation (MT) task show that our method can not only achieve significant improvements over individual decoders, but also bring substantial gains compared with a state-of-the-art word-level system combination method.
منابع مشابه
Mixture Model-based Minimum Bayes Risk Decoding using Multiple Machine Translation Systems
We present Mixture Model-based Minimum Bayes Risk (MMMBR) decoding, an approach that makes use of multiple SMT systems to improve translation accuracy. Unlike existing MBR decoding methods defined on the basis of single SMT systems, an MMMBR decoder reranks translation outputs in the combined search space of multiple systems using the MBR decision rule and a mixture distribution of component SM...
متن کاملA Hybrid Machine Translation System Based on a Monotone Decoder
In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...
متن کاملA Machine Learning Approach to Hypotheses Selection of Greedy Decoding for SMT
This paper proposes a method for integrating example-based and rule-based machine translation systems with statistical methods. It extends a greedy decoder for statistical machine translation (SMT), which searches for an optimal translation by using SMT models starting from a decoder seed, i.e., the source language input paired with an initial translation hypothesis. In order to reduce local op...
متن کاملJoint Decoding with Multiple Translation Models
Current SMT systems usually decode with single translation models and cannot benefit from the strengths of other models in decoding phase. We instead propose joint decoding, a method that combines multiple translation models in one decoder. Our joint decoder draws connections among multiple models by integrating the translation hypergraphs they produce individually. Therefore, one model can sha...
متن کاملModel Combination for Machine Translation
Machine translation benefits from two types of decoding techniques: consensus decoding over multiple hypotheses under a single model and system combination over hypotheses from different models. We present model combination, a method that integrates consensus decoding and system combination into a unified, forest-based technique. Our approach makes few assumptions about the underlying component...
متن کامل